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Quantum Fluctuations in Thermal Vacuum State
for Two LC Circuits With Mutual Inductance
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By means of thermal field dynamics theory, we study the quantum fluctuations of two
LC circuits with mutual inductance at a finite temperature.
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1. INTRODUCTION

With the progress in nanotechnology and microelectronics, the trend in the
miniaturization of integrated circuits and devices towards atomic scale dimen-
sions becomes strong and definite. When the charge-carrier inelastic coherence
length and the charge-carrier confinement dimension approach the Fermi wave-
length, the classical physics is expected to be invalid and quantum effects must be
taken into account. The quantum effects for a single LC lossless circuit were first
discussed by Louisell (1973). Following a similar line of thought, many authors
have discussed the quantum effects of mesoscopic circuits (€thaly 1995;
Fanet al, 2000; Li et al,, 1996; Wanget al, 2000; Xiao-Quanget al, 1998;
Zhanget al, 1998). However, Louisell’s result is obtained Bt= 0; the Joule
heat effects have not been taken into account. Electric currents in a circuit (not
superconductors) produce Joule heat, and practical electric circuits are always
working at a finite temperature. There is no doubt that the study of quantum noise
of mesoscopic circuits at a finite temperature is very important both theoretically
and experimentally. Recently, Fan Hong-yi and Pan Xiao-yin have studied the
quantization of two LC circuits at the temperatire= 0 (Hong-vyiet al,, 1998).

In this paper, we employ thermal field dynamics (TFD) theory (Takahashi and
Umezawa, 1975) to study the quantum fluctuations of the same system at a finite
temperature.
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2. QUANTIZATION OF TWO LC CIRCUITS
WITH MUTUAL INDUCTANCE

For a system including two LC circuits with mutual inductance, the classical

Hamiltonian is given by Hong-yét al. (1998)
1(pf P\, 4 , G m
=—(2+2)+ 2+ 2 — — - t) — ), (1
2A<|1 + L + 2C, + 2C, ~ AL, P2 tea(t) — Geea(t), (1)

whereg;(t) ande,(t) are external sourcelg,andl; are the self-inductance coeffi-
cients,m is the mutual-inductance coefficient between two circaitgindc, are
the capacitances = q;(t) andg, = gy(t) are the electrical charges of the two
circuits, and their conjugate momentaand p, are, respectively,

p1=|1ﬁ+ma, 2
_ 9 do
p2—|2E+mE, 3
2
A=1-T 4)
Il

It is obvious that Eq. (1) is analogous to two harmonic oscillators with a kinetic
coupling term. According to the standard quantization principle, we quantize the
system by identifyingyx and px as Hermite operators and imposing the commu-
tation relation

[au. p;] =15, (.j=12) (5)

(For convenience, here and henceforth we set Plank cogtzmt= 1.) Therefore
Eq. (1) represents a pair of quantized harmonic oscillators with kinetic coupling.
We now introduce the following unitary operatdrto diagonalizeH:

- [[RENE) s

where the state vectq)(g;)) in Eq. (6a) is the two-mode coordinate eigenstate,

u=<2g), (6b)

a = Bcosg/2), b= Bsin(p/2), (6¢)
c=—-B!sin@/2), d= B lcosp/2), (6d)

and

with
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1/4
C1
B=|— , 6
<02> (6e)
2m./ciCo
tgp = ———. 6
de ,C, — LG (6f)

With the help of the technique of integration within an ordered product of opera-
tors (IWOP) (Hong-yi, 1997; Hong-\at al,, 1987) we perform the integration in
Eg. (6a) and obtain the normal product formlbf{denoted by ::)

1
U = sechr exp[é tanhr (a;? — a{z)]

; exp[(af, a;)(G —1) <Z:)} ;

exp{—% tanhr (a3 — a3) cosp + a1 Singo]} , 7)
where
_ cosf/2) sinfp/2)
G = sechr <—sin(<p/2) cosfp/2) )’ (8a)
1 C1
=-In{—=).
r ) n <02) (8b)
From Eq. (6a) we can deduce
UlqU =aq +bgp, U lgU =cq+dg, 9)
UlpU =dp—cp, U lpU =bp +ap. (10)

Substituting Eqs. (9) and (10) into Eqg. (1), we obtain the diagonalized
HamiltonianH’

H =U"HU
pf p% Ki » Ko,
=1 4, 2 - = Vi(t Vo(t)ap, 11
2m1+2m2+2q1+2q2+ 1(t)or + Vo(t)oe (11)
where
L L 1,024 1,07 + 2mbd) (12)
ms Alqls ’
11 (1.¢* + I1a% + 2mag (13)
mpy A|1|2 '
a? b2  d?
K1:_+_1 K2=_ ] (14)
C1 Co C1 Co

Vi(t) = —aei(t) — cezt),  Va(t) = —bea(t) — dea(t). (15)
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It is obvious that Eq. (11) is the Hamiltonians of two independent quantum har-
monic oscillators with frequencies; = ,/K;/m;j, (j =1, 2).
Letting

Mygwk i
= , k=1, 2), 16
a= | (qk b pk) k=1,2) (16)

a = e (qk - mkiwk pk) k=12 17)

Equation (11) can be rewritten as

1 1
H = wl(afal + E) + wz(az*az + 5) + n(t)(a + &)

+ ya(t)(a2 + a3), (18)
where
V) _
w(t) = N k=1,2) (19)

It can be proved that the time evolution operdth(t, 0) corresponding téd’ is
given by Hong-yi (1997).

Us(t, 0) = expl—i (w8 a1 + wpaj ap)t]
expl—i(nja; + may + n3as + nody)l, (20)

here we have omitted a phase factor,

|
nk(t) = / w(t) exp—iawxt)dr, k=1,2) (21)
0
Therefore, the wave function of the system at tinig given by
[y (1)) = UUs(t, 0)lv(0)), (22)

here|y(0)) is the the wave function of the system at initial titne- O.
If the the wave function of the system at initial tirhe= O is in the ground
state|00), then we have

[y (1)) = UUs(t, 0)00)
=V exp[ - %(Im(t)l2 + |772(t)|2)} expl—i[n;(t)e " a

+n3(t)e“*'aj1}00)
= U |Zlv ZZ)! (23)

where|z,2,) is two-mode coherent state with = —i n;(t)e‘iwkt.
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When the external electric source is only instantaneously switched on, say,
for an infinitesimal timé = p — 0 and then switched off, in this case, the system
is in squeezed vacuum state:

¥ (t = p))p—0=U|00) = sechr exp[% tanhr (al+2 — a{z)}|00). (24)

It should be pointed that Eq. (24) is different from Eq. (20). Here, the ground state

of the system is in squeezed vacuum state, not rotated squeezed vacuum state. The
reason is that the unitary transformation operatan Eqg. (6a) is different from

that in Hong-yiet al. (1998). Moreover, the squeezed parametenly depends

on the ratio of the capacitances of the two-component circuit (see Eq. (8b)).

3. QUANTUM FLUCTUATION OF THE SYSTEM

We now study the quantum fluctuation of the system at finite temperature.
The effect of temperature can be introduced in terms of TFD theory, which was
invented by Takahashi and Umezawa (1975). In TFD one assodates)( acting
on a Hilbert space, with thermal freedom operatérsi(") in the extended Hilbert
space (a fictitious spac). The operatdmndat obey the following commutation
relation:

[&,a"] =1, [G,al=[aal=0 (25)
The ensemble average of an operaatefined in the original Hilbert space,
(A) =z (B)tr(Ae ™),  z(B) =tr(e™), (26)
can be calculated as a pure state (so-called thermal vacuum state) average, namely

(A) = (0(B)IAIO(B)), (27)

whereg = (kT)~* andk is the Boltzmann constant. Takahashi and Umezawa have
proved that at finite temperatufethe thermal vacuum stat@(B)) for a harmonic
oscillator is given by Takahashi and Umezawa (1975).

10(8)) = S(6)|00) = sechr 6 exp@*&* tantv)|00), (28)
where the thermal operat&o) is
S(0) = expl—6(ad — atat), (29)
w
tanhp = exp( — ﬁ) (30)

We now suppose the initial state of the systemis in two-mode thermal vacuum
state

|¥/(0)) = [0(8))110(B))2 = S(61)S(62)100)1|00)>
= sechr 6, sechd, exp@; a; tanty; + a; & tantb,)|00)1|00),, (31)
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where
S(0) = expl-Oc(ad — a7 &),  (k=1,2),

>, k=1,2)

ha)k

tanho = exp( ~ T

Then we have
[¥(t)) = UUs(t, 0)I0(8))110(8))2.
It can be proved that
S H(61)a1 S(61) = a; cosl; + &, sintv;,
S 1(02)a2S(62) = a; coslv, + &5 sinmy,,

Us_la]_U = ale_i("lt + Z1, Us_laZU = aze_l"’zt + 2o,

where
2 = —injt)e "

From Egs. (9) (10), and (35) we have

[ 2 [ 2

(1) =,/ —aRe(z) + ,| —DbRe(z),
MHw1 MHw?2
| 2 [ 2

() = .| —CRe(z) + ./ —dRe(z),
M1 Hw2

(P1) = v2pw1dim(z1) — v/ 2uwclm(zy),
(p2) = —v/2nwiblm(zy) + +/ 2uwoalm(zy),

2 2
@2 = 5 [4Re(z1) + cosh(®,)] + [4RE(2,) + cosh(y)]
Hwy 21wy
+ Re@z)Re),
ML/ w12
2 2
(@) = —[4Re(z2) + cosh(2y)] + 5—[4REX(zz) + cosh(2y)]
2/1,(1)]_ 2/La)2
424 Ret)Rew),
MU/ w102

Song

(32)

(33)

(34)
(35a)
(35h)

(35¢)

(36)

(37)

(38)

(39)
(40)

(41)

(42)

(p?) = :—Zldzuwl[mmz(zl) + cosh(2,)] + %Czﬂw2[4|m2(22) + cosh(2,)]

—4cdu/wiw1Im(z1)Im(zp),

(43)
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(p3) = %bzuw1[4lm2(zl) + cosh(,)] + %azuw2[4|m2(z2) + cosh(2,)]

— 4aby./o1walM(z1)Im(z). (44)

Therefore, the fluctuations of the charggsand their conjugate variablgs are,
respectively,

(Aqw)?) = (92) — (q)?

2 2
=& cosh(@) + cosh(2y), (45)
21wy 2pawy
(AG)?) = (0f) — (G)?
c? 2
= cosh(®,) + cosh(2,), (46)
21wy 2pawy
((Ap)?) = (p2) — (p1)?
= % d?uw, cosh(®,) + %czua)z cosh(3,), (47)
((AP2)%) = (P3) — (p2)?
= %bzuwl COSh(El) + %az,u,a)z COSh(ﬂz) (48)

From Egs. (37) to (48), we can draw the following conclusion. (1) The averages
of the charges); and their conjugate variablgs only depend on parametezs

and have nothing to do with temperature (2) The mean-square values of the
chargesy; and their conjugate variablgg are dependent on both the parameters
z and temperatur@. (3) The quantum fluctuations of the charggsand their
conjugate variablep; are independent on the parametgrsSince the parameters

Z¢ are related to the soureg(t) andes(t) by Eq. (36); therefore, we can obtain
the conclusion that the quantum fluctuations of the chagigesid their conjugate
variablesp; have nothing to do with the concrete forms of the sourgéy and

2(t). (4) At a finite temperature the system exhibits more quantum noise than that
attheT — 0 case.

4. CONCLUSION AND DISCUSSION

In short, we have studied the quantization of two LC circuit with mutual
inductance at a finite temperature and discussed its time evolution. When the
external electric source is only instantaneously switched on, say, for an infinites-
imal timet = p — 0 and then switched off, the ground state of the system is in
squeezed vacuum state and the squeezed paranmtirdepends on the ratio of
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the capacitances of the two-component circuit. By means of TFD theory, we have
studied the quantum fluctuation of the system at a finite temperature. The results
show that at a finite temperature the system exhibits more quantum noise than that
at theT — 0 case. It is remarkable the quantum fluctuations of the chayges

and their conjugate variablgg have nothing to do with the concrete form of the
sources(t).
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