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Quantum Fluctuations in Thermal Vacuum State
for Two LC Circuits With Mutual Inductance
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By means of thermal field dynamics theory, we study the quantum fluctuations of two
LC circuits with mutual inductance at a finite temperature.
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1. INTRODUCTION

With the progress in nanotechnology and microelectronics, the trend in the
miniaturization of integrated circuits and devices towards atomic scale dimen-
sions becomes strong and definite. When the charge-carrier inelastic coherence
length and the charge-carrier confinement dimension approach the Fermi wave-
length, the classical physics is expected to be invalid and quantum effects must be
taken into account. The quantum effects for a single LC lossless circuit were first
discussed by Louisell (1973). Following a similar line of thought, many authors
have discussed the quantum effects of mesoscopic circuits (Chenet al., 1995;
Fan et al., 2000; Li et al., 1996; Wanget al., 2000; Xiao-Quanget al., 1998;
Zhanget al., 1998). However, Louisell’s result is obtained atT = 0; the Joule
heat effects have not been taken into account. Electric currents in a circuit (not
superconductors) produce Joule heat, and practical electric circuits are always
working at a finite temperature. There is no doubt that the study of quantum noise
of mesoscopic circuits at a finite temperature is very important both theoretically
and experimentally. Recently, Fan Hong-yi and Pan Xiao-yin have studied the
quantization of two LC circuits at the temperatureT = 0 (Hong-yiet al., 1998).
In this paper, we employ thermal field dynamics (TFD) theory (Takahashi and
Umezawa, 1975) to study the quantum fluctuations of the same system at a finite
temperature.

1 Department of Physics, Ningbo University, Ningbo 315211, People’s Republic of China.

793

0020-7748/03/0400-0793/0C© 2003 Plenum Publishing Corporation



P1: GCR

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467277 June 20, 2003 21:45 Style file version May 30th, 2002

794 Song

2. QUANTIZATION OF TWO LC CIRCUITS
WITH MUTUAL INDUCTANCE

For a system including two LC circuits with mutual inductance, the classical
Hamiltonian is given by Hong-yiet al. (1998)

H = 1

2A

(
p2

1

l1
+ p2

2

l2

)
+ q2

1

2C1
+ q2

2

2C2
− m

Al1l2
p1 p2− q1ε1(t)− q2ε2(t), (1)

whereε1(t) andε2(t) are external sources,l1 andl2 are the self-inductance coeffi-
cients,m is the mutual-inductance coefficient between two circuits,c1 andc2 are
the capacitances,q1 = q1(t) andq2 = q2(t) are the electrical charges of the two
circuits, and their conjugate momentap1 and p2 are, respectively,

p1 = l1
dq1

dt
+m

dq2

dt
, (2)

p2 = l2
dq2
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+m

dq1

dt
, (3)

A = 1− m2

l1l2
. (4)

It is obvious that Eq. (1) is analogous to two harmonic oscillators with a kinetic
coupling term. According to the standard quantization principle, we quantize the
system by identifyingqk and pk as Hermite operators and imposing the commu-
tation relation

[q1, pj ] = i δi j , (i , j = 1, 2) (5)

(For convenience, here and henceforth we set Plank constanth/2π = 1.) Therefore
Eq. (1) represents a pair of quantized harmonic oscillators with kinetic coupling.
We now introduce the following unitary operatorU to diagonalizeH :

U =
∫ ∫ ∣∣∣u(q1

q2

) 〉〈 (q1

q2

) ∣∣∣dq1dq2, (6a)

where the state vector|( q1
q2

)〉 in Eq. (6a) is the two-mode coordinate eigenstate,

and

u =
(

a b
c d

)
, (6b)

with

a = B cos(ϕ/2), b = B sin(ϕ/2), (6c)

c = −B−1 sin(ϕ/2), d = B−1 cos(ϕ/2), (6d)



P1: GCR

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467277 June 20, 2003 21:45 Style file version May 30th, 2002

Quantum Fluctuations in Thermal Vacuum State 795

B =
(

c1

c2

)1/4

, (6e)

tgϕ = 2m
√

c1c2

L2C2− L1C1
. (6f)

With the help of the technique of integration within an ordered product of opera-
tors (IWOP) (Hong-yi, 1997; Hong-yiet al., 1987) we perform the integration in
Eq. (6a) and obtain the normal product form ofU (denoted by ::)

U = sechr exp

[
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2
tanhr
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a+2
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2

)]
: exp

[
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:
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]}
, (7)

where

G = sechr

(
cos(ϕ/2) sin(ϕ/2)
− sin(ϕ/2) cos(ϕ/2)

)
, (8a)

r = 1

4
ln

(
c1

c2

)
. (8b)

From Eq. (6a) we can deduce

U−1q1U = aq1+ bq2, U−1q2U = cq1+ dq2, (9)

U−1 p1U = dp1− cp2, U−1 p2U = bp1+ ap2. (10)

Substituting Eqs. (9) and (10) into Eq. (1), we obtain the diagonalized
HamiltonianH ′

H ′ = U−1HU

= p2
1

2m1
+ p2

2

2m2
+ K1

2
q2

1 +
K2

2
q2

2 + V1(t)q1+ V2(t)q2, (11)

where
1

m1
= 1

Al1l2

(
l2d2+ l1b2+ 2mbd

)
, (12)

1

m2
= 1

Al1l2

(
l2c2+ l1a2+ 2mac

)
, (13)

K1 = a2

c1
+ c2

c2
, K2 = b2

c1
+ d2

c2
, (14)

V1(t) = −aε1(t)− cε2(t), V2(t) = −bε1(t)− dε2(t). (15)
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It is obvious that Eq. (11) is the Hamiltonians of two independent quantum har-
monic oscillators with frequenciesω j =

√
K j /mj , ( j = 1, 2).

Letting

ak =
√

mkωk

2

(
qk + i

mkωk
pk

)
, (k = 1, 2), (16)

a+k =
√

mkωk

2

(
qk − i

mkωk
pk

)
(k = 1, 2). (17)

Equation (11) can be rewritten as

H ′ = ω1

(
a+1 a1+ 1

2

)
+ ω2

(
a+2 a2+ 1

2

)
+ γ1(t)(a1+ a+1 )

+ γ2(t)(a2+ a+2 ), (18)

where

γk(t) = Vk(t)√
2mkωk

, (k = 1, 2). (19)

It can be proved that the time evolution operatorUs(t, 0) corresponding toH ′ is
given by Hong-yi (1997).

Us(t, 0)= expb−i (ω1a+1 a1+ ω2a+2 a2)tc
expb−i (η∗1a+1 + η1a1+ η∗2a∗2 + η2a2)c, (20)

here we have omitted a phase factor,

ηk(t) =
∫ l

0
γk(τ ) exp(−iωkτ )dτ, (k = 1, 2). (21)

Therefore, the wave function of the system at timet is given by

|ψ(t)〉 = UUs(t, 0)|ψ(0)〉, (22)

here|ψ(0)〉 is the the wave function of the system at initial timet = 0.
If the the wave function of the system at initial timet = 0 is in the ground

state|00〉, then we have

|ψ(t)〉 = UUs(t, 0)|00〉

= U exp

[
− 1

2
(|η1(t)|2+ |η2(t)|2)

]
exp{−i [η∗1(t)e−iω1ta+1

+ η∗2(t)e−iω2ta+2 ]}|00〉
= U |z1, z2〉, (23)

where|z1z2〉 is two-mode coherent state withzk = −iη∗k(t)e−iωkt .
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When the external electric source is only instantaneously switched on, say,
for an infinitesimal timet = ρ → 0 and then switched off, in this case, the system
is in squeezed vacuum state:

|ψ(t = ρ)〉ρ→0 = U |00〉 = sechr exp

[
1

2
tanhr

(
a+

2

1 − a+
2

2

)]|00〉. (24)

It should be pointed that Eq. (24) is different from Eq. (20). Here, the ground state
of the system is in squeezed vacuum state, not rotated squeezed vacuum state. The
reason is that the unitary transformation operatorU in Eq. (6a) is different from
that in Hong-yiet al. (1998). Moreover, the squeezed parameterr only depends
on the ratio of the capacitances of the two-component circuit (see Eq. (8b)).

3. QUANTUM FLUCTUATION OF THE SYSTEM

We now study the quantum fluctuation of the system at finite temperature.
The effect of temperature can be introduced in terms of TFD theory, which was
invented by Takahashi and Umezawa (1975). In TFD one associates (a, a+), acting
on a Hilbert space, with thermal freedom operators (ã, ã+) in the extended Hilbert
space (a fictitious spac). The operatorsã andã+ obey the following commutation
relation:

[ã, ã+] = 1, [ã, a] = [ã, a+] = 0 (25)

The ensemble average of an operatorA defined in the original Hilbert space,

〈A〉 = z−1(β)tr(Ae−βH ), z(β) = tr(e−βH ), (26)

can be calculated as a pure state (so-called thermal vacuum state) average, namely

〈A〉 = 〈0(β)|A|0(β)〉, (27)

whereβ = (kT)−1 andk is the Boltzmann constant. Takahashi and Umezawa have
proved that at finite temperatureT the thermal vacuum state|0(β)〉 for a harmonic
oscillator is given by Takahashi and Umezawa (1975).

|0(β)〉 = S(θ )|00̃〉 = sechr θ exp(a+ã+ tanhθ )|00̃〉, (28)

where the thermal operatorS(θ ) is

S(θ ) = expb−θ (aã− a+ã+)c, (29)

tanhθ = exp

(
− ω

2kT

)
. (30)

We now suppose the initial state of the system is in two-mode thermal vacuum
state

|ψ(0)〉 = |0(β)〉1|0(β)〉2 = S(θ1)S(θ2)|00̃〉1|00̃〉2
= sechr θ1 sechθ2 exp(a+1 ã+1 tanhθ1+ a+2 ã+2 tanhθ2)|00̃〉1|00̃〉2, (31)
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where

S(θk) = exp[−θk(akãk − a+k ã+k )], (k = 1, 2), (32)

tanhθk = exp

(
− hωk

2kT

)
, (k = 1, 2). (33)

Then we have

|ψ(t)〉 = UUs(t, 0)|0(β)〉1|0(β)〉2. (34)

It can be proved that

S−1(θ1)a1S(θ1) = a1 coshθ1+ ã+1 sinhθ1, (35a)

S−1(θ2)a2S(θ2) = a2 coshθ2+ ã+2 sinhθ2, (35b)

U−1
s a1U = a1e−iω1t + z1, U−1

s a2U = a2e−1ω2t + z2, (35c)

where

zk = −iη∗k(t)e−iωkt (36)

From Eqs. (9) (10), and (35) we have

〈q1〉 =
√

2

µω1
aRe(z1)+

√
2

µω2
bRe(z2), (37)

〈q2〉 =
√

2

µω1
cRe(z1)+

√
2

µω2
dRe(z2), (38)

〈p1〉 =
√

2µω1dIm(z1)−
√

2µω2cIm(z2), (39)

〈p2〉 = −
√

2µω1bIm(z1)+
√

2µω2aIm(z2), (40)

〈q2
1〉 =

a2

2µω1
[4Re(z1)+ cosh(2θ1)] + b2

2µω2
[4Re2(z2)+ cosh(2θ2)]

+ 4ab

µ
√
ω1ω2

Re(z1)Re(z2), (41)

〈q2
2〉 =

c2

2µω1
[4Re2(z1)+ cosh(2θ1)] + d2

2µω2
[4Re2(z2)+ cosh(2θ2)]

+ 4cd

µ
√
ω1ω2

Re(z1)Re(z2), (42)

〈p2
1〉 =

1

2
d2µω1[4Im2(z1)+ cosh(2θ1)] + 1

2
c2µω2[4Im2(z2)+ cosh(2θ2)]

− 4cdµ
√
ω1ω1Im(z1)Im(z2), (43)
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〈p2
2〉 =

1

2
b2µω1[4Im2(z1)+ cosh(2θ1)] + 1

2
a2µω2[4Im2(z2)+ cosh(2θ2)]

− 4abµ
√
ω1ω2Im(z1)Im(z2). (44)

Therefore, the fluctuations of the chargesqj and their conjugate variablespj are,
respectively,

〈(1q1)2〉 = 〈q2
1〉 − 〈q1〉2

= a2

2µω1
cosh(2θ1)+ b2

2µω2
cosh(2θ2), (45)

〈(1q2)2〉 = 〈q2
2〉 − 〈q2〉2

= c2

2µω1
cosh(2θ1)+ d2

2µω2
cosh(2θ2), (46)

〈(1p1)2〉 = 〈p2
1〉 − 〈p1〉2

= 1

2
d2µω1 cosh(2θ1)+ 1

2
c2µω2 cosh(2θ2), (47)

〈(1p2)2〉 = 〈p2
2〉 − 〈p2〉2

= 1

2
b2µω1 cosh(2θ1)+ 1

2
a2µω2 cosh(2θ2) (48)

From Eqs. (37) to (48), we can draw the following conclusion. (1) The averages
of the chargesqj and their conjugate variablespj only depend on parameterszk

and have nothing to do with temperatureT . (2) The mean-square values of the
chargesqj and their conjugate variablespj are dependent on both the parameters
zk and temperatureT . (3) The quantum fluctuations of the chargesqj and their
conjugate variablespj are independent on the parameterszk. Since the parameters
zk are related to the sourceε1(t) andε2(t) by Eq. (36); therefore, we can obtain
the conclusion that the quantum fluctuations of the chargesqj and their conjugate
variablespj have nothing to do with the concrete forms of the sourcesε1(t) and
ε2(t). (4) At a finite temperature the system exhibits more quantum noise than that
at theT → 0 case.

4. CONCLUSION AND DISCUSSION

In short, we have studied the quantization of two LC circuit with mutual
inductance at a finite temperature and discussed its time evolution. When the
external electric source is only instantaneously switched on, say, for an infinites-
imal time t = ρ → 0 and then switched off, the ground state of the system is in
squeezed vacuum state and the squeezed parameterr only depends on the ratio of



P1: GCR

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467277 June 20, 2003 21:45 Style file version May 30th, 2002

800 Song

the capacitances of the two-component circuit. By means of TFD theory, we have
studied the quantum fluctuation of the system at a finite temperature. The results
show that at a finite temperature the system exhibits more quantum noise than that
at theT → 0 case. It is remarkable the quantum fluctuations of the chargesqj

and their conjugate variablespj have nothing to do with the concrete form of the
sourceε(t).

5. ACKNOWLEDGMENT

The project was supported by Zhejiang Provincial National Science Founda-
tion of China.

REFERENCES

Chen, B., et al., (1995).Physics Letters A205, 121.
Fan, H. Y. (1997).Representation and Transformation Theory in Quantum Mechanics, Shanghai Sci-

entific and Technical Publishers, 43 pp. (In Chinese).
Fan, H. Y. et al., (1998).Chinese Physics Letters15, 625.
Fan, H. Y. et al., (2000).Chinese Physics Letters17, 174.
Fan, H. Y., Zaidi, H. R., and Klauder, J. R. (1987).Physical Review D: Particles and Fields35, 1831.
Li, Y. Q. et al., (1996).Physical Review B: Condensed Matter53, 4027.
Louisell, W. H. (1973).Quantum Statistical Properties of Radiation, Wiley, New York, chap. 4.
Takahashi, Y. and Umezawa, H. (1975).Collective Phenomenoa2, 55.
Wang, J. S. et al., (2000).International Journal of Theoretical Physics39, 2595.
Wang, X. G. et al., (2000).Chinese Physics Letters17, 171.
Zhang, Z. M. et al., (1998).Physics Letters A244, 196.


